

Maintenance and troubleshooting of energy systems

Regular maintenance of energy systems is essential. It avoids costly breakdowns and improves plant efficiency. This course will give you the skills to perform effective maintenance and intervene in the event of a failure.

By Eric Chimeshula

Course objectives

Preventive maintenance

Learn techniques to prevent breakdowns before they happen.

Maintenance corrective

Control the necessary interventions after a breakdown.

Diagnostic

Effectively identify the root cause of technical problems.

Security

Safely work on energy installations.

Importance of preventive maintenance

Failure prevention

Identify and correct problems before they escalate.

Performance Optimization

Maintain optimal plant performance.

3 Security

2

Reduce the risk of dangerous failures.

Case in point : Drop in production

Problem

20

A company sees a drop of energy production.

Diagnostic

Inspection reveals a build-up of dust on the panels.

Solution

Result

A simple cleaning is carried out.

Initial performance is restored.

Cleaning the solar panels

Why clean?

Dust reduces the effectiveness of the panels. Regular cleaning ensures optimal performance.

When to clean?

Every 3 to 6 months depending on the environment.

How to clean?

Use clean water and a soft cloth. Avoid harsh detergents.

Battery control

Make sure the voltage is in accordance with

Prevent overheating that could degrade the

Case in point : Battery problem

Benefits of good maintenance

Common outages

Reduction in the efficiency of photovoltaic

Techniques troubleshooting

1

2

3

4

Interpret status lights and error codes.

Checking Connections

Inspect AC, DC, and communication connections.

Resetting the device

Restart the device if necessary.

Checking Settings

Review the configuration for errors.

Dépannage de problèmes spécifiques

Problem	Solution p
No charging	Check Setti
Faulty energy conversion	Control inp
Incorrect AC switching	Check powe

ossible

ngs & Connections

out/output voltages

er sources and settings

Best practices for maintenance

Documentation

Keep a log of interventions and inspections.

Planning

Establish a regular inspection and maintenance schedule.

Manufacturer recommendations

Follow Victron Energy's guidelines.

General error indications

Low Battery LED

Low voltage or dead battery.

LED Surcharge

Load too high for the converter.

LED Temperature

Environmental overheating or load excessive.

AC LED

Problems related to mains power.

Special LED indications

Synchronized flashing

May indicate probe or measurement errors.

2

3

1

Flashing AC LED

"Load Only" mode or synchronization in progress.

Codes OK VE. Bus

Indicate a good internal state despite system errors.

0

<

EV error codes. Bus

Application Victron Toolkit

When to call a professional

Persistent outages	Sev
Issues not resolved after	Erro
troubleshooting	inter
attempts.	

Complex issues

Situations beyond your skills or requiring internal intervention.

ere error codes

ors indicating an

rnal hardware failure.

Repair and replacement

Testing and Diagnosis

Use a multimeter to check continuity and voltage.

Cable replacement

Change damaged wires and ensure good insulation.

3

₿

Changing the batteries

Follow the manufacturer's recommendations for installation.

Inverter intervention

Check settings and replace if necessary.

Concret case : Corrective maintenance

Safety during interventions

Wear insulating gloves, goggles and safety shoes.

Due diligence

Turn off the power supply before handling.

Battery Management

Handle with care and avoid short circuits.

Conclusion

Regular maintenance and proactive troubleshooting are essential to ensure the reliability and durability of a facility. By following guidelines and taking a methodical approach, you can prevent breakdowns, extend the life of your appliances, and maintain a high-performance energy system.

