

Installation and wiring of solar kits

This course will walk you through the best practices for successful solar kit installation. Correct installation ensures optimal, efficient and safe operation.

You will learn how to install the panels, optimize their orientation, and make reliable electrical wiring.

Par Eric Chimeshula

Module Objectives

1

Compliant installation

Install a solar kit correctly in compliance with safety standards.

Optimization

2

Optimize the orientation and inclination of solar panels.

3

Secure cabling

electrical wiring.

To make reliable and safe

Importance d'une installation correcte

Efficiency

An optimal installation ensures maximum efficiency of the solar system.

Security

potential accidents.

Durability

Extends equipment life and reduces breakdowns.

Avoids electrical hazards and

Choice of location panels

Sun exposure

Choose areas without shade during hours of high light.

Orientation

Ideally facing south in the northern hemisphere to capture more sun.

Strong Support

Make sure the structure can support the weight of the panels.

Fixing the panels

Sloped roof

Use mounting rails to follow the slope of the roof.

Flat roof

optimize orientation.

Ground

Install on a metal frame that is well anchored to resist the wind.

Use inclined structures to

Attachment Steps

Connection to the controller Charging

Connecting the batteries and converter

Connect the negative terminal of the battery to the negative terminal of the regulator.

Connect the converter to the regulator's output terminals or directly to the batteries.

Protection and security

Circuit breakers

Protects against overloads and short circuits.

V

Parafoudres

Protect against power surges caused by lightning.

Fuses

Protect batteries from

excessive currents.

Grounding

Avoids the risk of electrocution and protects sensitive equipment.

Case studies

Detached house

Installation of 4 x 300W panels, 40A MPPT controller, 2 x 12V 200Ah batteries and 3000W inverter. Solution to shading: moving on a pole.

Commerce

3

Securing after outages due to overloading. Adding circuit breakers, fuses, and surge arresters to avoid hazards.

Sheet metal roofing

Fixing on surfaces subject to vibration. Use of reinforced aluminum fasteners with anti-corrosion bolts.

Tests and verifications

Conclusion

Security

Standard-compliant installation

Performance

Orientation optimization

Reliability

Safe electrical wiring

This course has allowed you to learn the fundamentals of installing and wiring a solar kit. Always follow the manufacturers' recommendations.

