

Sizing a solar kit

The rise of renewable energy is making solar kits increasingly popular. This course will teach you how to properly size your solar installation to optimize its efficiency and costeffectiveness.

By Eric Chimeshula

Course objectives

Calculate the power required

Determine the precise energy requirements for your installation.

Select the right equipment

Choose components for optimal and reliable operation.

Optimize yield

Maximize efficiency by considering operating conditions.

Accurately assess the energy needs of a site. **Technical calculations**

Needs analysis

Determine power and energy needed for reliable power.

Component selection

Choose the right equipment according to technical criteria.

Optimized design

To size a high-performance and durable system.

Key steps

Energy needs assessment

Consumption

Calculate the total consumption in kWh of all appliances.

Power

needed at any given time.

Usage Profile

Analyze when and how energy will be consumed.

Determine the maximum power

Energy calculation formula

 $E = P \times t$, where E is the energy in kWh, P is the power in watts, and t is the time in hours.

Application

electrical appliances.

Importance

A precise calculation ensures that your solar system is properly dimensioned.

This formula applies to all your

Examples of calculation

Refrigerator

LED Lamp

5

150 W \times 10 hours = 1.5 kWh per day

 $10 \text{ W} \times 5 \text{ hours} = 0.05 \text{ kWh per day}$

Computer

 $50 \text{ W} \times 4 \text{ hours} = 0.2 \text{ kWh per day}$

Device classification

Summary table of consumption

Device	Power (W)	Usage (hrs/day)
Refrigerator	150	10
LED Lamp	10	5
Computer	50	4
Fan	75	6
Television set	100	3

Selection of components

(@)	
Solar panels	Ba
Select according to the	Cho
required power and	des
available space.	the

Regulator

Adapt to the voltage of the system and the power of the panels.

Batteries

- Choose according to the
- lesired autonomy and
- he type of use.

Inverter

- Size according to the
- power of the devices to
- be powered.

Optimization factors

Optimize the angle and direction of

Use of the GAISMA software

This software makes it possible to obtain meteorological data (annual sunshine for example) from the site where the solar field is installed.

To access the software, use the following link: <u>www.gaisma.com</u>

Kigali, <u>Rwanda</u> - Sunrise, sunset, dawn and dusk times, table

	Fut	ure	Past						
Ι	Date Sunrise Sunset		Length	Change	Dawn	Dusk Leng		Change	
	Today	06:04	18:10	12:06		05:43	18:31	12:48	
	+1 day	06:04	18:10	12:06	00:00 equal length	05:43	18:31	12:48	00:00 equal length
+	1 week	06:02	18:08	12:06	00:00 equal length	05:41	18:29	12:48	00:00 equal length
+2	weeks	06:00	18:05	12:05	00:01 shorter	05:40	18:26	12:46	00:02 shorter
+1	month	05:57	18:01	12:04	00:02 shorter	05:36	18:22	12:46	00:02 shorter
+2 r	nonths	05:56	17:57	12:01	00:05 shorter	05:34	18:19	12:45	00:03 shorter
+3 I	nonths	06:01	18:01	12:00	00:06 shorter	05:38	18:24	12:46	00:02 shorter
+6 I	nonths	05:51	17:57	12:06	00:00 equal length	05:30	18:18	12:48	00:00 equal length

Kigali, <u>Rwanda</u> - Solar energy and surface meteorology

Variable	Ι	Π	ш	IV	v	VI	VII	VIII	IX	Х	XI	XII
Insolation, <u>kWh/m²/day</u>	4.63	4.87	4.65	4.48	4.48	4.63	4.95	4.85	4.82	4.39	4.26	4.36
Clearness, <u>0 - 1</u>	0.45	0.47	0.44	0.44	0.47	0.51	0.54	0.50	0.47	0.42	0.42	0.43
Temperature, <u>°C</u>	19.84	20.67	20.23	19.72	20.69	21.19	21.25	22.03	21.69	19.95	19.19	19.26
Wind speed, <u>m/s</u>	2.87	2.97	2.75	2.77	3.31	3.89	3.60	3.44	2.99	2.65	2.50	2.37
Precipitation, mm	75	102	118	186	107	23	9	35	90	109		101
Wet days, d	16.9	16.6	20.3	23.2	16.8	5.8	5.0	7.2	12.7	18.8	23.3	19.8

Use of the GAISMA software

Kigali, <u>Rwanda</u> - Sun path diagram

Using the SOLARIS STORE Simulator

The SOLARIS STORE simulator allows you to calculate your electricity consumption and compare it with the production of different solar kits.

The application can be accessed online at www.solaris-store.com

🏠 -- Solar autonomy -- Simulator self-contained solar kit 🔗

100% self-contained solar kit simulator

Are you con Our self-co	nected to the nsumption rang	network I <u>e</u>	?	
				>
				_
E	000	9000		10000
8	1000	9000	-	10000
-	- The		2 Watt	
Ifort	Mobility		Customized	

Using the PVSyst software

PVsyst is the photovoltaic sizing software of reference for financiers. A powerful program that allows the PV production of any sunny surface on earth to be evaluated, taking into account possible shades.

To access the software, use the following link: <u>www.pvsyst.com</u>

COURBES DE PUISSANCE D'UN PANNEAU SOLAIRE EN FONCTION DE L'ENSOLEILLEMENT

Calculation of solar panel capacity

1

2

Basic Formula

 $P_{Panneaux} = \frac{E_{Quotidienne}}{H_{Solaire} \times \eta_{Système}}$

The power required depends on the daily consumption, the hours of sunshine and the overall output.

Key Factors

Sunshine and temperature vary depending on the location. The yield is usually between 70% and 80%.

3 Practical example

For 5 kWh/day with 5 hours of sunshine and 75% efficiency, 1.33 kWp of panels are needed.

INFLUENCE DE LA TEMPÉRATURE SUR LES PERFORMANCES D'UN PANNEAU SOLAIRE PHOTOVOLTAÏQUE

Battery sizing

Capacity Requirements

 $C_{Batterie} = \frac{E_{Autonomie} \times 1000}{V_{Batterie} \times DoD \times \eta_{Batterie}}$

Depends on the energy to be stored, voltage, depth of discharge (DoD) and efficiency.

Types of batteries

Lead-acid/AGM/Gel: 50% DoD. Lithium: DoD up to 90%.

Example

For 5 kWh/day, 2 days of autonomy, 24V, DoD 50%, efficiency 90%: need 925 Ah in 24V.

Charge controller

System voltage

The regulator must be compatible with the voltage of the batteries (12V, 24V, 48V).

PV Input Voltage

Must match the panels. MPPT regulators accept higher voltages.

Ampacity

For 1.33 kWp in 24V, a regulator of at least 60A is required.

Choice of inverter

Pure sine wave for sensitive equipment.

Sizing cables

Protective equipment

Circuit breakers

Protect against overloads and short circuits by automatically shutting off the circuit.

Fuses

Protects DC batteries and circuits from overcurrent.

Surge arresters and lightning rods

Protect against power surges

caused by thunderstorms.

Full sizing example

Summary and tips

Conclusion

Thanks to this methodical approach, you will design a high-performance and sustainable solar system, meeting the specific needs of your project.

